CBCS SCHEME

USN

15EC73

Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Power Electronics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Mention and explain the different types of power electronic converter systems. Draw their output/input characteristics. (08 Marks)

With neat waveforms and switching nodel, explain the switching characteristics of power MOSFET.
(08 Marks)

OR

- 2 a. The bi-polar transistor in below figure -2(a) is specified to have β_F in the range of 8 to 40. The load resistance is $R_c = 11\Omega$. The dc supply voltage is $V_{cc} = 200V$ and the input voltage to the base circuit is $V_B = 10V$. If $V_{CE(sat)} = 1V$ and $V_{BE(sat)} = 1.5 V$, find
 - i) The value of R_B that results in saturation with an ODF of 5
 - ii) β_{forced} iii) Power loss P_T in transistor.

Fig Q2(a)

(08 Marks)

b. Explain di/dt and dv/dt limitation in power converters.

A BJT is operated as a chopper switch at a frequency of $f_s = 10$ KHz. The dc voltage of the chopper is $V_s = 220$ V and the load current is $I_L = 100$ A. The switching times are $t_d = 0$, $t_r = 3\mu s$ and $t_f = 1.2 \mu s$.

Determine: i) The values of L_s, C_s and R_s for critically damped conditions.

- ii) Rs, if the discharge time is limited to 1/3rd of the switching period.
- iii) Rs, if the peak discharge current is limited to 10% of the load current
- iv) Power loss due to R-C snubber P_s neglecting the effect of inductor L_s on the voltage of snubber capacitor C_s . Also assume that $V_{CE(sat)} = \phi V$ (08 Marks)

Module-2

3 a. In detail explain the two transistor model of a thyristor.

(08 Marks)

Mention and explain different thyristor turn-on methods. Mention the advantages of gate triggering. (08 Marks)

OR

a. Explain dynamic turn – off characteristics of SCR.

For R – triggering circuit, the gate voltage required to trigger the SCR is $V_{GT} = 0.6V$ and corresponding $I_{GT} = 250\mu A$. The silicon diode is used and input voltage is $V = 100 \sin wt$. Find firing angle α if $R_1 = 10k\Omega$ and $R_2 = 220k\Omega$.

b. Explain uJT relaxation oscillator and design uJT firing circuit using an uJT having the parameters $\eta = 0.72$, $I_P = 60\mu A$, valley voltage $V_V = 2.5$ V, $I_V = 4mA$, $V_{BB} = 15$ V and $R_{BB} = 5k\Omega$. The leakage current with emitter open is 3mA. The triggering frequency is 1kHz and $V_{g(min)} = 0.3$ V. Also calculate the minimum and maximum values of triggering frequency. Assume $C = 0.05\mu F$.

Module-3

- With the help of neat circuit diagram describe the operation of a single phase full converter 5 with R.L load. Draw the associated waveforms. Derive expressions for rms and average output voltages.
 - b. A single phase half wave converter is operated from 120V, 60Hz supply. If the load is resistive with $R = 10\Omega$, and the delay angle is $\alpha = 60^{\circ}$, calculate efficiency, FF, TUF. Also derive the equations for rms and average output voltages. (08 Marks)

OR

- With neat circuit diagram and waveforms, explain the principle of phase angle control in AC 6 voltage controller. Derive the equations for rms and average output voltages. (08 Marks)
 - A single phase half wave ac voltage controller has an input voltage of 150V and a load resistance of 8Ω . The firing angle of thyristor is 60° in each positive half cycle. Find :

- iv) Power factor (pf)
- Average output voltage ii) RMS output voltage iii) Power output Power factor (pf) v) Average input current over one cycle.

(08 Marks)

Module-4

- Classify the choppers and explain the different types and chopper circuits. (08 Marks)
 - Obtain an expression for the output voltage for a step-up chopper. A dc chopper has an input voltage of 200V and a load of 8Ω resistance. The voltage drop across thyristor is 2V and the chopper frequency is 800Hz. The duty cycle $\alpha = 0.4$. Find
- i) Average output voltage ii) rms output voltage iii) Chopper efficiency.

(08 Marks)

In detail explain buck regulator. 8

- (08 Marks)
- The buck regulator shown in figure Q8 (b) has an input voltage of $V_s = 12V$. The required average output voltage is $V_a = 5V$ at $R = 500\Omega$ and peak – to – peak output ripple voltage is 20mV. The switching frequency is 25kHZ. The peak - to - peak ripple current of inductor is limited to 0.8A, determine:
 - i) The duty cycle, K ii) The filter inductance, L iii) The filter capacitor, C
 - iv) The critical values of L and C.

(08 Marks)

Module-5

- What do you mean by inverters? Explain the operation of single phase full bride inverter. Draw the load current waveforms for R, RL and RLC loads. (08 Marks)
 - b. Mention the applications of current source inverters. Explain any one type of single phase (08 Marks) current source inverter.

OR

- Explain solid state relays. 10
 - Explain microelectronic relays.

(08 Marks)

(08 Marks)